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The de Haas-van Alphen effect has been measured using a torque method at magnetic fields up to 8 kOe 
and temperatures between 4.2 and 1.6°K for both pure zinc and a zinc manganese alloy exhibiting a resistance 
minimum. Experimentally, it is shown that there is no change in the period of the oscillations although the 
field and temperature dependence of the amplitude of the oscillations is found to be anomalous. A considera
tion of the influence of the conduction electron relaxation time on the de Haas-van Alphen effect shows 
that the observed behavior may be explained if the relaxation time is allowed to approach zero in a small 
energy interval, A, about the Fermi energy. Using the phenomenological theory of the resistance minimum, 
due to Korringa and Gerritsen, and the value of A obtained from the de Haas-van Alphen effect experiments 
the resistance as a function of temperature was calculated and found to agree within experimental error 
with the measured values. 

INTRODUCTION 

IN normal metals and alloys the electrical resistance 
decreases with decreasing temperature and eventu

ally becomes constant at temperatures sufficiently low 
that the scattering of the conduction electrons is chiefly 
due to crystal imperfections and impurities. In 1930 
Meissner and Voigt1 observed that in certain metals the 
electrical resistivity fell to a small value with decreasing 
temperature and then rose by a few percent as the tem
perature was further lowered. This effect was studied 
more closely by de Haas et a!.2 who found that the tem
peratures at which the minimum occurred increased 
with increasing residual resistance ratio. This estab
lished that the minimum in electrical resistance was 
due to the presence of crystal imperfections and/or im
purities. MacDonald and Pearson3 have shown that 
along with the resistance minimum there also occurs an 
anomalous thermo-emf. Large negative values of the 
thermo-emf are observed at temperatures somewhat 
higher than the temperature at which the resistance 
minimum occurs in these alloys. The experimental 
position as of 1960 is summarized by van den Berg,4 who 
points out that the anomalies in the transport properties 
are now believed to be due to the presence of certain 
transition element impurities and in fact the ability to 
produce a resistive anomaly seems to depend on the 
existence of a localized magnetic moment introduced by 
the impurity. 

Recent extensions of the Schmitt5 theorv of the 
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resistance minimum by Kasuya,6 Bailyn,7 and de 
Vroomen8 to explain "giant" thermoelectric powers in 
dilute alloys at low temperatures predict an effective 
relaxation time which is sharply energy dependent near 
the Fermi energy.9 Domenicali10 in an extension of some 
early work of Korringa and Gerritsen11 has shown that 
such a relaxation time will explain the resistance and 
thermoelectric power of these alloys over a wide tem
perature range. 

Since the amplitude of the de Haas-van Alphen effect 
is related to the relaxation time of the conduction elec
trons, a study of this effect in a zinc manganese alloy, 
which exhibited a resistance minimum, was made in 
order to determine whether an energy-dependent relaxa
tion time would account for any anomaly which might 
be found in the de Haas-van Alphen oscillations. 

The experimental study was made on zinc since it was 
known to exhibit a resistance minimum12 and a large-
amplitude de Haas-van Alphen effect.13 

Discussion of the Theory of the de Haas-van 
Alphen Effect for Zinc 

The present experiments on the de Haas-van Alphen 
effect consists of measurements on the field dependence 
of the torque exerted on a single-crystal sample in a 
homogeneous magnetic field. The torque C about an axis 
can be derived from the free energy F of the electron 
system since , , v 

c=-dF/a^, (i) 
where \[/ is an angle specifying rotation in a plane normal 
to the prescribed axis. [See Fig. 1(a).] The large ampli-
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7 M. Bailyn (unpublished). 
8 A. R. de Vroomen and M. L. Potters, Physica 27, 1083 (1961). 
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reader is referred to D. K. C. MacDonald, Thermoelectricity, and 
Introduction to Principles (John Wiley & Sons, Inc., New York, 
1962) and also to D. K. C. MacDonald and A. M. Guenault, Phil. 
Mag. 6, 1201 (1961). 

10 C. A. Dominicali, Phys. Rev. 117, 984 (1960). 
11 J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953). 
12 Y. Muto, Y. Tawara, Y. Shibuya, and T. Fukuroi, J. Phys. 

Soc. Japan 14, 380 (1959). 
13 B. I. Verkin and I. M. Dmitrenko, Izv. Akad, Nauk SSSR, 

Ser. Fiz. 19, 409 (1955). 

2045 



2046 F . T . H E D G C O C K A N D W . B . M IT I R 

tude long-period de Haas-van Alphen oscillations ob
served in zinc arise from pieces of Fermi surface which 
are ellipsoidal in shape13,14 and are situated as shown in 
Fig. 1(b). Since the surfaces are ellipsoidal, it is possible 

to use the expression for the free energy of the conduc
tion electrons derived by Dingle.15 He showed that the 
part of the free energy that depends periodically on the 
magnetic field is given by 

2x(2w*)3/2£rF(/3*#)3/2
 M r 

rperiodic== 2. I ' 

v2/*3 *-* L 

( - 1 ) * co$(2wpEo/i3*H-T/4:) 

p^ sinh2w*pkT/(3*H 
cospir(tn*/fn) expi-ph/rpH) , (2) 

where /3* = e/m*c is an effective double Bohr magneton, 
V is the volume of the crystal, T is the absolute tem
perature EQ is the Fermi energy measured from the 
bottom of the ellipsoid, r is the electron relaxation time, 
and w* is the cyclotron effective mass. 

This expression can be simplified for zinc since it has 
been shown experimentally16 that harmonics are small. 
Also, the effective mass is of the order of 0.01 of the free 
electron mass and hence cos(7rw*/w) is unity. Combin
ing Eqs. (1) and (2) and noting that £ o / 0 * # » l , the 
torque on the sample is given by 

sin(27r£o/0*#-7r/4) 
C=BHmT e-2T*k*/pH9 (3) 

where 

and 

sinh(2T*ftr/0*ff) 

E0kV/efi\m dm* 
B= ( _ ) 

c) dip 

%= h/irkr. 

(4) 

The quantity x has the dimensions of temperature and 
is called the collision or Dingle temperature. 

SUSPENSION 
[100] DIRECTION 

ZINC 
CRYSTAL 

FIG. 1. (a) The orientation of 
the zinc crystals, (b) The Fermi 
surface of zinc [after E. Faw-
cett, J. Phys. Chem. Solids 18, 
320 (1961)]. The surfaces 
marked K are associated with 
the long-period de Haas-van 
Alphen effect. 

14 W. A. Harrison, Phys. Rev. 118, 1190 (1960). 
15 R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952). 
16 J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc. 

(London) A248, 1 (1955). 

From Eq. (3) it can be seen that the period P of the 
oscillations can be written 

P=P*/Eo=P/EQ(tn*/m), (5) 

where (3=e/tnc is a double Bohr magneton. 
The effective mass of the electrons can be determined 

from the ratio of the amplitude \Ci\ of the oscillations 
at temperature T\ to the amplitude, j C21, at tempera
ture r 2 . 

Assuming that the temperature is low enough that 
the relaxation time is constant then the ratio of the 
amplitudes, from Eq. (3), is given by 

| Ci | 7 \ sinh[(2T**zy0) (m*/mB)] 

| C21 T2 sinh[(27r2£7y/3) (tn*/mH)] 
W7 (6) 

where m*/tn is the only unknown quantity. Equation 
(6) can be solved by graphical methods for m*/m. From 
the value of tn*/tn and the corresponding period the 
value of the Fermi energy E 0 can be calculated from 
Eq. (5). 

Once the effective mass has been determined the 
collision temperature x can be evaluated from the field 
dependence of the amplitude of the oscillations. Exclud
ing the periodic term, Eq. (3) may be written: 

a=£-xH-\ 
where 

0 ln{( |C| /£T1 / 2r) sinh[(27r2Jfer//3H)(w*/w)]} 
a= (7) 

and 
2Tr2k(tn*/tn) 

pinB 
* = 

2w2k(m*/m) 
(8) 

whence if a is plotted as a function of H~l a straight line 
should result whose slope is —x. The relaxation time, 
r, can then be obtained from Eq. (4). 

Sample Preparat ion 

The alloys were prepared by melting 99.999% pure 
zinc, (obtained from the New Jersey Zinc Company) 
together with 99.97% pure powdered manganese, (ob
tained from A. D. MacKay, Inc.) in a quartz tube under 
an inert atmosphere. The maganese was powdered in an 
agate mortar to avoid the possibility of ferromagnetic 
contamination. The melt was maintained at a tempera-
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FIG. 2. The electrical resistance and 
thermo-emf as a function of tempera
ture, Insets a, b, and c are referred to in 
the text. 
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ture of 700°C for a period of 2 h, during which time it 
was agitated vigorously every 15 min. The melt was 
then quenched in ice water. The concentration of 
manganese in the alloys was determined from a graph 
of residual resistance ratio ^4.2/(^273—^4.2) as a func
tion of nominal concentration obtained from the 
weights of the components of the alloy. A line giving the 
best fit was drawn and the concentration of each alloy 
determined from the graph using the measured re
sistance ratio. 

The resistance and thermo-emf samples were wires of 
rectangular cross section ^ in. wide made from cold-
rolled strips about 0.005 in. thick. After fabrication 
these samples were etched in a 50% hydrochloric acid 
solution and given a strain relieving anneal under 
vacuum at 400°C for 24 h and then quenched in ice 
water. 

The ^-in.-diameter spherical single crystals required 
for the de Haas-van Alphen effect measurements were 
grown by Tamman's method in a graphite mold by 
cooling the sample from 10°C above the melting point 
to 10°C below the melting point at the rate of about 
5°C/h. The crystals were etched in a 50% hydrochloric 
acid solution which clearly showed any grain boundaries 
which might be present. The basal plane was determined 
by cleaving the crystals under liquid nitrogen and the 
[100] direction found by x-ray diffraction in a Bragg-
type spectrometer. The piece removed from the crystal 
was rolled into a strip and its resistance ratio, and hence 
its maganese concentration determined. Table I gives 
the resistance ratio, resistivity, and nominal manganese 
concentration for all the samples studied. 

Experimental Methods and Results 

The cryostat and experimental procedure used in 
making the electrical resistance measurements have 
been described previously.17,18 The results of the re
sistance measurements are shown in Fig. 2. Inset (c) 
of Fig. 2 shows the resistance of the zinc manganese 
single crystal used in the de Haas-van Alphen experi
ments. Inset (a) shows the low-tempera ture resistance 
of the most concentrated alloy containing 0.42% 
manganese. The resistance of this alloy is constant 
between 1.8 and 5°K and no evidence of a resistance 

TABLE I. The resistance ratio, composition, and resistivity 
of the various samples measured. 

Sample 

Resistance 

Thermo-emf 

de Haas-van Alphen 
crystal 

Resistance ratio 
XJU.nl(Rm-

E n d l 

1.2 
14.7 

171 
362 
396 
692 

1190 
40.6 

174 
334 
676 

1060 
23.8 

-R4.i)]Xlb 

End 2 

42.8 
1.81 

300 
583 

1060 

J Cone. 
- Mn 
(wt. %) 

Pure Zn 
0.006 
0.06 
0.13 
0.14 
0.24 
0.42 
0.015 
0.063 
0.11 
0.22 
0.37 
0.008 

Resistivity 
(IO"6 

Q cm) 

5.5 
5.0 
5.7 
6.7 
6.9 
8.1 

12.0 

17 A. C. Rose-Innes and R. F. Broom, J. Sci. Instr. 33, 31 (1956). 
18 F. T. Hedgcock, W. B. Muir, and E. E. Wallingford, Can. T. 

Phys. 38, 376 (1960). 
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FIG. 3. The experimental results of 
the de Haas-van Alphen effect meas
urements. (a) pure zinc r=4.2°K, 
^ = 34.5°; (b) pure zinc r=1.75°K, 
^ = 34.5°; (c) 0.008 wt. % zinc manga
nese alloy r=4.2°K, ^ = 34.0°; (d) 
0.008 wt. % zinc manganese alloy 
r=1.65°K, ^ = 34.0°. The vertical 
asymmetry of the oscillations is prob
ably due to the influence of the ani
sotropic crystalline environment of the 
manganese ions and is presently under
going further investigation. 

maximum was found. The temperature at which the 
minimum occurs and the depth of the minimum D, 
denned by D= (JR2.o— Rmin)/Rmia, are plotted as a 
function of manganese concentration and shown in inset 
(b) of Fig. 2. These results are similar to those for other 
alloys showing a resistance minimum.18,19 

The thermo-emf measurements were made in a 
cryostat similar to that used by MacDonald and 
Pearson.20 The emf of a zinc-zinc manganese thermo
couple, having its cold junction at 4.2 °K and its hot 
junction at temperatures varying between 5 and 100°K, 
was measured using a galvanometer amplifier.21 To 
reduce the effects of stray thermo-emf s in the leads a 
superconducting reversing switch22 was used which 
allowed the potential from the thermocouple to be 
reversed inside the cryostat. The results of these 
measurements are also shown in Fig. 2. They agree 
qualitatively at least with other thermo-emf measure
ments on alloys showing a resistance minimum.20 

The de Haas-van Alphen effect was measured using 
a servo torsion balance similar in design to that of 
Croft, Donahoe, and Love,23 the only difference being 
the dc amplifier which, in this case, is identical to one 
used by the authors in a low-temperature susceptibility 
servo balance.24 Arrangements were made for pumping 
on the liquid-helium Dewar and measurements were 

19 A. N. Gerritsen, Physica 25, 489 (1959). 
20 D. K. C. MacDonald and W. B. Pearson, Proc. Roy. Soc. 

(London) A219, 373 (1953). 
21 D. K. C. MacDonald, J. Sci. Instr. 24, 232 (1947). 
2 2 1 . M. Templeton, J. Sci. Instr. 32, 172 (1955). 
23 G. T. Croft, F. J. Donahoe, and W. F. Love, Rev. Sci. Instr. 

26, 360 (1955). 
24 F. T. Hedgcock and W. B. Muir, Rev. Sci. Instr. 31, 390 

(1960). 

made both at 4.2 and about 1.7°K. The temperature 
was determined by measuring the vapor pressure above 
the liquid helium. The crystals were oriented in the field 
as shown in Fig. 1(a). The Typical results obtained for 
the torque as a function of field are shown in Fig. 3 for 
both pure zinc and a 0.008 wt. % zinc manganese alloy. 

Analysis of the de Haas-van Alphen 
Effect Measurements 

The period of the oscillations is given by the slope of 
the line obtained by plotting the values of H~l at the 
extreme values of the torque against half-integers as 
shown in Fig. 4. As can be seen in Fig. 5, the square of 

6 7 8 9 
INTEGERS 

It 12 13 14 15 

FIG. 4. The values of H~l at extreme values of the torque as a 
function of half-integers for the 0.008 wt. % zinc manganese alloy. 
• indicate data obtained at 4.2 °K: • indicate data obtained at 
1.7°K. 
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FIG. 5. P2 as a function of cosV- • indicate data for pure zinc; 
• indicate data for pure zinc obtained by Verkin and Dmitrenko; 
X indicate data for the 0.008 wt. % zinc manganese alloy; the 

dotted lines indicate the experimental error; the inset shows 
m*/m as a function of orientation for pure zinc; • indicates the 
value obtained by Dhillon and Shoenberg. 

the period P is a linear function of cos2^ which is to be 
expected for an ellipsoidal Fermi surface.25 Included in 
Fig. 5 are the data obtained by Verkin and Dmitrenko13 

for pure zinc. The results are seen to be identical within 
the indicated 1.5% experimental error. 

The effective mass of the electrons is determined by 
plotting W [see Eq. (6)] as a function of tn*/mH for 
various values of T\ as shown in Fig. 6(a)26 using the 
experimental values of j C\ \ / | C21 and T\ corresponding 
values of m*/tnH are read from the graph and m*/m 
calculated. The values obtained for the effective mass 
of pure zinc are plotted as a function of orientation 
in the inset of Fig. 5. As indicated in the figure, our 
value is slightly greater than that obtained by Dhillon 
and Shoenberg,16 but agree with those of Joseph and 
Gordon.27 The value of the Fermi energy of pure zinc, 
measured from the bottom of the ellipsoid was calcu
lated using Eq. 5 and found to be (3.8±0.2)X10~14 erg. 

Since the zinc alloy exhibits a low-temperature 
resistance anomaly, it was anticipated that the relaxa
tion time would not be constant in the temperature 
range of the de Haas-van Alphen effect measurements. 
This means that the effective mass of the electrons in 
the alloy cannot be determined by the above method. 
In order to carry out the analysis for the collision 
temperature for the alloy it was assumed that the 
effective mass of the electrons in the alloy was identical 

25 D. Shoenberg, Progress in Low Temperature Physics (Inter-
science Publishers, Inc., New York, 1959), Vol. II. 

26 T% remains fixed at 4.2°K. 
27 A. S. Joseph and W. L. Gordon, Phys. Rev. 126, 489 (1962). 

to that of the electrons in pure zinc. This is probably a 
reasonable assumption considering the extreme dilution 
(0.01 at. %) of the alloy.28 

The collision temperature was determined from the 
slope of the line obtained by plotting a as a function of 
H~~l [see Eq. (7)] as shown in Fig. 7 for pure zinc and in 
Fig. 8 for the zinc manganese alloy. As has been noted 
previously29 the curves are linear only for low fields.30 

The collision temperature was deduced from the linear 
portion of these curves and is found to be independent of 
orientation and temperature for pure zinc and has a 
value of 1.3°K.31 The collision parameter is apparently a 
function of both temperature and orientation for the 
zinc manganese alloy. This dependence will be analyzed 
further in the next section. All the experimental results 
obtained from the de Haas-van Alphen effect measure
ments are summarized in Table I I . 

DISCUSSION OF RESULTS 

Field and Temperature Dependence 
of the Amplitude 

Allowing for a temperature-dependent relaxation 
time, which might be expected in these alloys, Eq. (7) 

f— 

V— 

tj 

(a) 

1 1 

T , » I . 6 5 0 K ^ ^ 

>^T|- I .80< >K 

1 1 1 1 
0 10 20 30 40 50 60 70 80 90 

(m*/mH)x io7 (OERSTED-1) 

FIG. 6. (a) Calculated values of W as a function of (m*/mH); 
(b) the function I(TA/T) as a function of (T&/T). 

28 It is shown later that this assumption is consistent with the 
experimental results. 

29 F. J. Donahoe and F. C. Nix, Phys. Rev. 95, 1395 (1954). 
30 This is probably due to "magnetic breakdown" between the 

ellipsoids and the arms of the second zone surface. R. W. Stark, 
Phys. Rev. Letters 9, 482 (1962). 

31 This value agrees with the value obtained by Joseph and 
Gordon (reference 27). 
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TABLE II . The experimental results obtained from the de Haas-van Alphen effect measurements. 

(deg) 

14.5 
21 
34 
34.5 
41 
54 
54.5 
64 
64.5 
£o= 

Period X105 (Oe"1) 

Pure Zn 

6.10 

5.26 

3.72 

2.74 
[3.8±0.2)Xl0~14erg 

Zn-Mn 

5.90 
5.22 

4.80 
3.68 

2.82 

Effective mass (m*/m)XW 

Pure Zn Zn-Mn 

7.9 Assumed to be the same as the 
values for pure zinc 

9.3 

12.8 

18.3 

Collision temperature (°K) 

Pure zinc 

4.2+1.7°K 

1.3 

1.3 

1.3 

1.3 

Apparent value, 
Zn-Mn 

4.2°K 2.6°K 1.7°K 

5.1 5.9 
5.0 5.8 

5.2 5.7 6.1 
4.7 5.6 

4.3 5.4 

shows that the slope of the lines in Fig. 8 may vary with 
temperature but their intercept at infinite field should 
be independent of temperature. The experimental re
sults do not agree with theory and, in fact, a large varia
tion of the intercept with temperature is observed. In 
order to determine whether or not this anomaly was 
another manifestation of an energy-dependent relaxa
tion time, the free energy, and hence the amplitude of 
the de Haas-van Alphen effect, was determined for the 
case of a simple energy-dependent relaxation time. 

Dingle15 has calculated the free energy of the conduc
tion electrons in a metal in a magnetic field when the 
relaxation time is independent of energy. He has shown 
that the part of the free energy giving rise to the 
de Haas-van Alphen effect can be written 

t periodic 

where 

27r(2w*)3/2^rK//3*H' 

x E (py-vt(-i)'Q, (9) 

Q= f ^.wpi-iB/rm ln[l+e<£o-£)/*r-|(fjEi ( 1 0) 
J —00 

and a= h/r^H. If it is assumed that the relaxation time 
varies with energy such that r = ro everywhere except in 
the narrow energy range (E0— A ) ^ E ^ (E0+A) where 
r=0 . The integral Q can then be written 

Q^-^Traolplj [ ei2TPE/^*H \n£lJte(E^-E)/kT2dE 

fEo+A 

J Ea-A 

ei2TPE/0*H \ n [ \ + e(E*-E)/kTyLE (11) 

since the integral is zero when r=0 . The first part of Q 
when combined with Eq. (9) gives Dingle's expression 
for the free energy [see Eq. (2)]. It is thus seen, from 

Eqs. (9) and (11), that the effect of the postulated 
energy-dependent relaxation time is to add a term to the 
free energy which is given by combining the second part 
of Q in Eq. (11) with Eq. (9). This term has been 
evaluated in Appendix I, and results in an expression for 
the torque on a single crystal of material exhibiting a 
resistance minimum, due to the postulated energy-
dependent relaxation time, given by 

$in(2wEQ/P*H-T/4) 
C—BHU2T e-2Tr*kxo/p*H 

sinh(2w2kT/l3*H) 

• kTsmh(2T2kT/p*H) /Tt 

1+ / 
p*H m (12) 

0 Q.5 1.0 1.5 £0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0" 

H"1 x K>4 (OERSTED"1) 

FIG. 7. Field dependence of the amplitude of the oscillations for 
pure zinc. • indicates data obtained at 4.2°K; • indicates data 
obtained at 1.7 °K. 



D E H A A S - V A N A L P H E N E F F E C T 2051 

0 1 2 3 4 

H" 'x lO4 (OERSTED"1) 

FIG. 8. Field dependence of the amplitude of the oscillations for 
the 0.008 wt. % zinc manganese alloy. • indicates data obtained 
at 4.2°K; • indicates data obtained at 2.6°K; • indicates data 
obtained at 1.7°K. 

where kT& = A and Xo= h/wkTo. The function I(T&/T) is 
shown in Fig. 6(b). The field dependence of the ampli
tude of the de Haas-van Alphen oscillations will now 
be given by 

a-V=$-XoH-\ (13) 
where 

i?=j81nf 
kTsmh(2w2kT/^H) /Tt 

1+ I\ 
p*H (T)]/ 2T*k(m*/m). 

Figure 9 shows the results obtained by plotting a—rj as 
a function of H~l for rA=0.75°K. The value of 0.75°K 
for TA was found by a process of trial and error to give 
the best fit of Eq. (13) to the experimental data.32 As 
would be expected, from equation (13), a—r? is seen to be 
a linear function of H~l having a slope — xo and an 
intercept £ at infinite field, both of which are inde
pendent of temperature. The collision temperature is 
now seen to be independent of orientation and has a 
value of 5.9°K. 

In the foregoing analysis it has been assumed that 
the effective mass of the electrons in the alloy was 
identical to that of the electrons in pure zinc. If this is 
the case, then from Eqs. (13), (7), and (4) and the fact 

that the volume of the samples is the same in both 
cases, it is seen that a— rj, for the alloy, and a, for pure 
zinc, should be equal when they are extrapolated to 
infinite field for any given orientation. As can be seen 
from Figs. 7 and 9 the values of the intercepts agree to 
within about 10% thus confirming the correctness of the 
assumption. 

While it is well known that the relaxation time which 
is measured using the de Haas-van Alphen effect is quite 
different from that which is measured by electrical 
resistance it would seem that for alloys exhibiting a 
resistance minimum the energy range over which the 
relaxation time was assumed to be zero should be the 
same in both cases. On this basis the resistance of a 
sample having a zero relaxation time in the energy range 
EQ— 0.7Sk to E0+0.75& has been computed using the 
empirical formula given by Korringa and Gerritsen.11 

The result of doing this is shown by the solid line in 
inset (c) of Fig. 2. As can be seen from the figure agree
ment within the experimental error of the resistance 
measurements has been obtained. 

CONCLUSIONS 

The period of the de Haas-van Alphen oscillations in 
pure zinc and in the 0.008 wt. % zinc manganese alloy 
were found to be the same within the 1.5% experimental 

32 Noticeable misfit could be detected for a change in T& of 
±0.2°K. 

2 3 

H H x I04 (OERSTED*1) 

FIG. 9. Field dependence of the amplitude of the oscillations in 
the 0.008 wt. % zinc manganese alloy allowing for the postulated 
energy-dependent relaxation time. • indicates data obtained at 
4.2°K; • indicates data obtained at 2.6°K; A indicates data 
obtained at 1.7°K. 
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error. However, the variation of the amplitude of the 
oscillations with field and temperature was found to be 
anomalous in the alloy. In order to explain this anomaly, 
the effect of an energy-dependent relaxation time on the 
de Haas-van Alphen oscillations was investigated. A 
relaxation time that was assumed to be zero in the 
energy range {E^—kT^E^ (Ea+kTm) and constant 
elsewhere was found to fit the experimental results when 
rA=0.75°K. The electrical resistance was calculated 
from the expression given by Korringa and Gerritsen11 

when the relaxation time has the above behavior. Using 
a value of T& of 0.75°K the calculated and measured 
resistance were found to agree within experimental 
error. 

It is planned to extend these measurements to other 
suitable alloy systems in which an energy-dependent 
relaxation time might be expected to occur. 

APPENDIX I 

The part of the free energy of the conduction electrons 
which varies periodically with inverse magnetic field has 

been shown by Dingle15 to be 

FPeriodic=-'2w(2m*)^kTV(fi*H/2y^ 

X E (£)-1 / 2(- l )p& (Al) 

where 

£)_.£- iT/4 / e-2r(a\p\-ipE/0*H) 

X\n{l+e(E«-E)/kT}dE, (A2) 

P* = e/m*c an effective double Bohr magneton, 
a= h/T0*H, and r is the conduction electron relaxation 
time. For alloys having a low-temperature resistance 
and thermopower anomalies it has been pointed out 
that the relaxation time might be expected to be sharply 
energy dependent. 

The simplest energy-dependent relaxation time is that 
assumed by Korringa and Gerritsen11 in which r=ro, a 
constant, except for (EQ—A)^E^ (EQ+A) when r=0 . 
Under this condition the integral Q [Eq. (A2)] becomes 

e=e-
,— (2vaoipl-MW4) r r 

I ei2rpE/0*H 
\n{l+e(EQ~^/kT}dE- / ei2 

J E*-A 
rpE/FH \n{\ + e(E«-E)!kT}dE UQI+Q2J (A 3) ] -

since the integral Q is zero when r=0 . A value of T/TO=0.2 is sufficiently small to make Q —> 0. Combining Qi with 
Eq. (Al) gives an expression for the free energy identical to that obtained by Dingle15 which is 

2w(2tn*)MkTV(0*H)m . r ( - l ) p c<*(2<wpE*/pH-T/±) 
Fperiodic= E e~h^°r 

£3v2 P-iL ps/2sinh(2ir2pkT/ff*H) 

*H (A4) 

It is thus seen that the effect of an energy-dependent relaxation time is to add a term to the free energy which is 
determined by combining Q% with Eq. (Al). 

To evaluate Q^ consider the two cases (i) Eo^>A, (ii) EQ>A. 

Case (i) 

If E0»A, then e
i2^E^*H can be put equal to e

i27rpEQr^H and putting (E-E0)/kT=x with A=kTA, Q2 may be 
written 

where 
Q2=— kTe~l2raolpl''i(2irpE<i/^H~ir!A)]I(TA/T) 

rTA/T 

I(TA/T)= / \n(l+e~*)dx. 
J-TA/T 

(A5) 

(A6) 

Equation (A6) was integrated by numerical methods and the results are shown in Fig. 6(b). On combining 
Eq. (A5) with Eq. (Al), the term, / , which must be added to the free energy to account for the energy-dependent 
relaxation time, is calculated to be 

2ir(2tn*)mkTV(P*H)m . kT 
/ = E p-l/2{-\Y cos(2TpEo/0*H-Tr/4)e-*h/Trt*H. (A7) 

On adding Eq. (A7) to Eq. (A4) the periodic part of the free energy of the conduction electrons, in a metal having 
a resistance minimum due to the postulated energy-dependent relaxation time, is given by 

2<w(2m*y/2kTV(0*ny/2 

t periodic =: : 

hNl 

p» i L 

£ r ( - 1 ) P cos(2wpE0/P*H-w/4) 

pz/2 $inh(2w2pkT/p*H) 

, pkT sinh(2T2pkT/p*H) \n 
.e~pkiroFH\l+ _J_ / ( 7 V D . (A8) 
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In the present experiments the torque on a single crystal was measured. The torque C will be given by 

C=-dF/d*y 

where \p is an angle denoting rotation in a plane normal to the axis of suspension of the crystal. In the differentiation 
of (A8), to obtain the torque, the main contribution comes from the cosine term since £0//3*#»l. Thus the torque 
on the crystal is given by 

dF dF d(l/p*)dm* 
C= = (A9) 

ty d(l/p*) dm* # 
1/2E0kTV dm* oo r(~l)Psin(2x^£o/j3*£r~ir/4) /en\l/lEokTV dm* «o r 

= (-) Em 2 h 
\cJ irW d* P-iL 

ty p-iL pmsmh(2w2pkT/fi*H) 

pkT$inh(2T*pkT/l3*H) 
Xf-pvrroHi 1+: _ J — u — i / ( r A / r ) } 1, (Aio) 

which reduces to Eq. (12) of the main part of the paper by using the arguments following Eq. (2) in the main part 
of the paper. 

Case (ii) 

If EQ>A, then e
i2wpEffi*H cannot be put equal to e®*pE(i,P*H in the expression for ()2. Instead, put (E—E0)/kT=x 

and the expression for Q2 becomes 

/

A/kT 

ei[2TP(kTz/e*H)] \n(l+e-
x)dx. (All) 

-A/kT 

Since it is desired mainly to know the qualitative effect of the energy-dependent relaxation time on the period of 
the oscillations, Eq. (All) can be simplified at the cost of accuracy in the value of Q2 by putting 

(l+*-*) = 2, 
whence 

/

A/kT 

ei2rpkTx/^H^x 

-A/kT 

p*H ln2 
= e-2*(aQ\p\)Uei[2Tp(E<r-A)/p*H-T/4}_jeil2rp(EQ+A)/p*H-r/4}\ (A12) 

2wp 

Taking the real part of Eq. (A12), Q2 becomes 

P*H ln2 
()2= e-2raQ\P\ cos(2wpEo/p*H-ir/4:) sin(2wpA/p*H). (A13) 

2wp 
Combining Eq. (A13) with Eq. (Al) and adding it to Eq. (A4), the periodic part of the free energy of the condition 
electrons in a metal exhibiting a resistance minimum due to the postulated energy-dependent relaxation time is 

2w(2m*)V*kTV(0*Hy/2 • ( ( -1 )* COS(2TPEO/P*H-T/4) 
t periodic ==: 21* 

(A14) 

JH2 P-II £'/2sinh(2^r/|8*tf) 

r 2sinh(2w*pkT/p*H) "il 
Xe-i>*/ro^ 1+ sin(2ir/>A//S*#) . 

It is thus seen that the effect of r being equal to zero, in The ratio of the period of the modulation to the period 
an energy range A about the Fermi energy, is to add a of the oscillations is 
periodic term to the free energy whose amplitude is . . „ . Aw p /,,*%_ p /A 

sinusoidally modulated. The period of the modulation, rmod/r- (0 /p&)(p&0/P ) - £o/A. 
-Pmod, is given by For the zinc 0.008 wt. % zinc manganese alloy which has 

Pmod=P*/p&- been measured, E0 and A are, respectively, 3.8X10-14 
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FIG. 10. (a) The density of populated states as a function of 
energy for the pure metal, (b) The effective density of states as a 
function of energy for an alloy having the postulated energy 
dependent relaxation time, (c) A schematic representation of the 
magnetic energy levels which give rise to the de Haas-van Alphen 
effect. Populated levels are indicated by heavy lines. 

remains unchanged on alloying,34 then the Fermi energy 
of the alloy must increase by an amount A in order to 
accomodate all the electrons35 [c/. Figs. 10(a) and (b)]. 
This increase in the Fermi energy leads to a decrease 
in the period which is given by 

P a l l o y = ( / 3 * / ^ o ) ( l - A / E 0 ) = P p u r e ( l - A / E o ) , 

where E0 is the Fermi energy of the solvent. In the 
present case A/E0^ 1/400 and hence a decrease in the 
period of 0.25% would be expected. This is well within 
the present experimental accuracy of 1.5%. 

The effect of the gap in the density of states on the 
de Haas-van Alphen oscillations can be seen from Fig. 
10(c). As the field increases the magnetic levels move to 
the right. At energy EQ— A they depopulate rapidly 
giving rise to oscillations of period fi*/(Eo—A). At 
energy Eo+A they repopulate and give rise to a second 
set of oscillations having period (S*/(^o+A). Since this 
pair of oscillations have nearly the same period, they 
will beat and give rise to a set of modulated oscillations 
having period P*/E0 and a modulation period of 0*/A. 
[cf. Eq. (A14)] From Fig. 10(b) it is seen that another 
consequence of the gap in the density of states is that 
the transition from populated to unpopulated states is 
more abrupt than would normally be expected. This 
results in an increase in the amplitude of the oscillations 
in manner which is analogous to a reduction in tempera
ture. As can be seen from Eq. (A10), this is the expected 
behavior. 

erg and 1.0X10"16 erg. Whence Pmod/P^>400 and the 
effect of the modulation will be unnoticeable. 

The above theory suggests the following physical 
model. Any state existing in the energy interval in 
which r = 0 must, by the uncertainty principle, be very 
broad. As a consequence the transition probability be
tween this state and any other unoccupied state will be 
large and thus the net effect of the energy-dependent 
relaxation time will be to induce a gap in the effective 
density of states33 [Fig. 10(b)]. If a rigid band model is 
assumed for the alloy and the electron-to-atom ratio 

33 Equation (2.3) in Dingle's (reference 15) paper also leads to 
this conclusion. It should be pointed out that in either case the 
concept of a "density of states" may not be permissible for states 
which have such a poorly defined energy. 
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